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Abstract— A Feature and Pose Constrained Extended
Kalman Filter (FPC-EKF) is developed for highly dynamic
computationally constrained micro aerial vehicles. Vehicle local-
ization is achieved using only a low performance inertial mea-
surement unit and a single camera. The FPC-EKF framework
augments the vehicle’s state with both previous vehicle poses
and critical environmental features, including vertical edges.
This filter framework efficiently incorporates measurements
from hundreds of opportunistic visual features to constrain
the motion estimate, while allowing navigating and sustained
tracking with respect to a few persistent features. In addition,
vertical features in the environment are opportunistically used
to provide global attitude references. Accurate pose estimation
is demonstrated on a sequence including fast traversing, where
visual features enter and exit the field-of-view quickly, as well
as hover and ingress maneuvers where drift free navigation is
achieved with respect to the environment.

I. INTRODUCTION

To enable the autonomous operation of micro air vehicles

(MAV) (Figure 1), onboard estimation of the vehicle position

and attitude is required. However, the small payload budgets

and physical dimensions of these vehicles severely limit both

the sensors which can be used and the computational power

available for onboard estimation. Typically, mass constrained

MAV-size-vehicles can only use low-grade inertial sensors,

which can only be integrated for a few seconds before state

estimates significantly diverge. By augmenting the estimate

with observations from a light-weight camera though this

inertial-only estimate can be greatly improved [1], [2], [3],

[4]. A good introduction to the complementary nature of

inertial and visual sensors is provided in [5]. In this paper we

present a navigation system for a MAV which incorporates

measurements from both inertial and visual sensors with

particular attention to the low onboard computational budget.

The navigation system required must be able to perform

in the following three flight scenarios:

• Fast Traverse – When flying between locations of in-

terest, the MAV will move through unexplored terrain

and new visual features will pass out of the field-of-

view of the camera soon after they are first seen. The

system should be able to track the general motion of the

vehicle in this scenario but does not need to maintain

a representation of the environment that passes out of

view.
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Fig. 1. Asctec Pelican Quadrotor approaching a building for ingress.

• Hovering – When hovering, the same visual features

will stay in view for longer periods of time. The position

estimate of the system should not drift in this scenario.

• Building Ingress – The MAV must be able to navigate

relative to a door or window sufficiently accurately to

fly through the opening and into the building. Due to

the limited field-of-view of the camera, the edges of the

opening may not be in view during the entire ingress.

Pose estimation must be computationally cheap enough for a

real-time implementation onboard the MAV, and the estimate

must be sufficiently accurate to allow reliable operation.

Many real-time pose estimation algorithms have been

developed which could be applicable to some of the scenar-

ios described above. Perhaps the best real-time monocular

camera tracking system developed is the Parallel Track-

ing and Mapping (PTAM) system developed by Klein and

Murray [6]. This system performs bundle adjustment over

keyframes to build a map of point landmarks in the envi-

ronment. In a parallel processing thread, the camera pose

is tracked relative to this map. The system performs very

well but is limited to small environments as the computation

time becomes prohibitive as the number of keyframes grows.

Even so, this system has been demonstrated for navigation

of a MAV [1] but due to the high computation cost of bundle

adjustment, the estimation was performed on a ground station

rather than onboard.

By comparison, filtering is more suited to real-time sys-

tems with low computation power [7]. Filtering also makes

the incorporation of data from an inertial measurement unit

(IMU) straightforward which allows fast position updates



(100Hz) and makes the true scale of the camera motion

observable.

In general, there are two filtering approaches for vision

based navigation: pose-based and feature-based. These filters

augment the system state with either previous camera poses

or the location of observed visual features, respectively. As

computational complexity limits the size of the filter state,

choosing the type of data to include in the filter state leads

to different filter behaviors.

Pose-based filtering [8], [9], [10], referred to here as

Vision Aided Inertial Navigation (VAIN), is in many respects

similar to bundle adjustment. VAIN systems augment the

filter state with the current estimate of the camera position

when an image is taken, and builds up a set of previous

camera poses over time. The filter complexity is only linear

in the number of observed features, which are tracked

between previous camera poses, and then used to update

the vehicle state. This allows the inclusion of a very large

number of observed features, which in turn can result in very

accurate motion estimation. For this reason, we have chosen

to use the system of Mourikis and Roumeliotis [10] as the

basis for our own system. When the size of the state becomes

too long, the older poses are removed from the state, which

allows the system to estimate the motion of the vehicle even

as it continually explores. However, once a pose is removed

from the state, and the measurements of features associated

with that camera pose are used, no further reference back

to the observation can be made. This can lead to filter drift,

even with sustained observations of the same feature set.

Feature-based filtering [11], [12], [13], [14] instead es-

timates the position of visual features in the world and

estimates the current vehicle pose relative to this map of

features. As long as these features stay in the state vector and

are observed, the pose estimate relative to these features will

not drift. However, for computational reasons these systems

are limited in the number of features they can maintain in the

state. If sparse feature maps are used, fewer observations are

used in each frame and so the pose estimate of the vehicle has

fewer constraints and is therefore less accurate. Furthermore,

in a monocular system, the depth of a newly observed feature

is not immediately observable and so the full feature state

cannot be estimated immediately. Either the features must

be initialized in a separate filter [14], [15] in which case

some observations of the feature are not used to constrain

the vehicle pose, or the feature is placed immediately in the

state vector with a prior on the depth [16], which can bias

the estimate. For instance, the work by Jones et. al. [14]

initializes each new feature in a sub-filter until the feature

covariance drops below a specified bound, and the feature is

added to the main filter state. Only after initialization does

the visual information affect the vehicle state. This delay can

lead to poor performance in scenarios where features might

quickly pass trough the field-of-view.

Instead, the navigation system proposed in this paper is a

hybrid between a pose-based and a feature-based filtering

system. Like other systems, the IMU measurements are

integrated to produce an up-to-date pose estimate at the high

IMU measurement rate. This integrated pose also acts as the

prior estimate for the vehicle pose when the next camera

frame is recorded. A camera pose is added to the filter state

when a new frame is recorded, and the current camera view

has sufficient baseline to the previous pose. A large number

of visual observations between the poses in the state vector

are used to constrain the pose estimates very accurately. Like

other pose-based systems, these visual features are forgotten

as soon as their measurements have been used to constrain

the poses in the sliding window. We call these Opportunistic
Features (OFs). In addition to this pose-based estimation, our

system includes a few select visual features, called Persistent
Features (PFs) into the filter state. Persistent features are

selected once it is ascertained that the feature can be tracked,

with preference given to features that are likely to remain in

the field-of-view. As such, the PF can be easily triangulated

from the previous camera frames, and then added into the

system state without significant bias. Two types of feature

are added to the state in this way: visual corner features

parameterized as a Cartesian point in 3D, and vertical line

features denoting the left and right edge of a door or window

which the MAV intends to fly through. These persistent

features perform two functions. Firstly, they allow the vehicle

to estimate its position relative to an opening as it performs

an ingress. Secondly, when the vehicle is hovering and keeps

the same features in view the vehicle pose estimate will not

drift. The number of persistent features is kept very low to

decrease the computational burden. Typically the position

of a few Cartesian PF are tracked (max five), along with

edges of the opening for the next ingress. This feature-and-

pose constrained filter is able to achieve the benefits of both

approaches: accurate motion estimation during traverses with

a large number of observations acting as constraints, and

drift free behavior when hovering or maneuvering through

an opening in a building.

In urban situations, the FPC-EKF also makes use of

opportunistic observations of vertical edges, to provide a

global attitude reference. A direct EKF updated based on

vertical edges measurements was developed, which does not

require any state augmentation.

II. ESTIMATION FRAMEWORK

The Feature-and-Pose Constrained Extended Kalman Fil-

ter (FPC-EKF) described here estimates the pose of a 6

degree of freedom micro air vehicle as it flies through the

environment, hovers, and passes through doors and windows.

The estimation framework incorporates measurements from

both an inertial sensor and a camera. The system is par-

ticularly suited to real-time onboard operation for an aerial

vehicle performing ingress maneuvers as it incorporates ideas

from both pose-based and feature-based techniques in the

same filtering framework. While the pose-based tracking

framework allows incorporation of hundreds of visual feature

observations, feature-based aspects of the estimator then

allow drift free tracking while hovering and the ability to

maneuver relative to an opening. In addition, observations

of vertical edges which are common in man made environ-



ments, are used to improve the attitude estimate of the vehicle

in flight.

The vehicle state is parameterized by a quaternion repre-

sentation, qbg , of the ground frame G rotation with respect

to the vehicle body frame B, the vehicle position pgb and

velocity vgb with respect to G, as well as the accelerometer

ba and gyroscope bω biases:

X =
[
qTbg bTω vTgb bTa pTgb

]
. (1)

For mathematical convenience, the vehicle body frame is

defined to be coincident with the IMU frame. While the full

vehicle state utilizes a four-component quaternion represen-

tation of attitude, the covariance of the system is represented

as a three-component representation of attitude errors [17].

This is the same state representation approach as used by

Mourikis and Roumeliotis [10].

The FPC-EKF augments the vehicle state (1) with a selec-

tion of previous camera poses, a few select point landmarks

to reduce drift, and an estimate of ingress points when one

is identified. Each aspect of pose estimation system will be

discussed in turn in the following sections.

A. Inertial Measurements

The vehicle carries an inertial measurement unit (IMU)

providing both measurements from both three-axis ac-

celerometers and gyroscopes. The measured acceleration and

angular velocity at each time-step are used to update the

current estimate of the pose and velocity of the vehicle in a

standard integration process. The vehicle state dynamics [10]

described below are integrated analytically over the IMU

sample period to provide the discrete time EKF state prop-

agation:

q̇bg =
1

2
Ω(ω)qbg, v̇gb = ag (2)

ṗgb = vgb, ḃa = na ḃω = nω

where ag is the vehicle acceleration in the ground frame, ω
is the rotational velocity in the body frame, and na and nω

are zero mean Gaussian noise processes associated with the

IMU bias drift, and:

Ω(ω) =

[−ω× ω
ωT 0

]
, ω× =

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ .

(3)

The IMU gyroscope and acceleration measurements ωm

and am respectively are used along with the current state

estimates to approximate the ground frame acceleration ag
and body frame rotation rates ω:

âg = R(qbg)
T (am − ba) (4)

ω̂ = ωm − bω (5)

Note that the angular rate measurement does not compensate

for the rotation of the earth, as is typically done with tactical

grade IMU navigation. This simplification was made for two

reasons, first the IMU sensor is very low grade, meaning

accelerations due to the Earth’s rotation are insignificant

compared to integration times, bias drift and sensor noise.

Secondly, due to operational constraints, the ground frame’s

location and orientation with respect to the earth may be

unknown.

For computation reasons, the estimates âg and ω̂ in

Equations (4)-(5) are assumed to be constant over the IMU

sample period (1/100 s). Unlike the approach of Mourikis

and Roumeliotis [10], this allows the analytic integration

of the dynamics equation (2) using standard linear matrix

differential equations, and analytic integration of the asso-

ciated covariance propagation equation. Comparison with a

numerical integration approach showed no resulting effect on

estimator performance.

B. Pose-Based Visual Constraints

The filter incorporates previous camera poses into the

system state to provide an efficient way of utilizing hundreds

of observed opportunistic features (OFs) to constrain the

vehicle’s motion estimate. The utilized pose-based frame-

work is substantially similar to the Multi-State Constraint

Kalman Filter (MSCKF) developed by Mourikis and Roume-

liotis [10], and readers should refer to their work for im-

plementation details. A brief description will be given here

for convenience and to explain how it fits into the rest of

our system. The MSCKF framework was chosen as the

computation complexity is only linear with respect to the

number of OF used in the filter, and it allows incorporation

of OF tracked over multiple camera frames as opposed to

just two-frame comparisons [8], [9]. However, this filter has

complexity at least quadratic [10] in the number of frames

added to the system state.

When a new frame is collected by the camera, the es-

timated pose (attitude and position) of the camera at that

moment is cloned from the vehicle state and used to augment

the state vector, a process termed “stochastic cloning”. To

meet computational constraints, the maximum number of

frames in the system state is limited to Mmax. Once Mmax

is reached, older frames in the state vector must be removed

and are no longer used for updating.

In each frame, observations are made of up to several hun-

dred opportunistic feature points, using a sub-pixel precise

version of the STAR feature detector, a center-surround type

detector, for detecting blob like features, based on [18] and

[19], and correspondences between frames are found using

upright SURF [20].

To maintain filter consistency, each measurement of an OF

is used only once in the MSCKF filter. Opportunistic features

measurements are not necessarily used in the Kalman filter

update if they are observed in the current frame. Instead OFs

are only included in the filter update according to either of

two criteria: First, when the feature leaves the field-of-view,

or is no longer tracked, and second if the maximum number

of frames Mmax is reached, all the features associated with

any removed frame are used in the filter update.

To use a OF in the filter update, the feature position in

the global frame fg is first triangulated using Levenberg-

Marquardt (LM) minimization, where the reprojection error



between fg and the camera poses in the state are minimized.

The EKF measurement equation is then created by lineariz-

ing the predicted feature projection in each camera about fg
and the previous state camera poses.

To avoid inconsistencies from including fg into the mea-

surement equation, the linearized measurement equations

are reduced by projecting the measurements onto the left

nullspace of the Jacobian for the feature location.

Unlike [10], we do not keep a pose in the state vector for

every new camera frame. Instead, our system makes more

efficient use of limited computational power and adds a new

frame only if it has a significant baseline from the previous

frame stored in the state. This is done by performing a stereo

registration of the common feature observations between

the two views using the rotation estimate and looking for

significant disparity.

C. Feature-Based Visual Constraints

The system keeps a small number of Persistent Features
(PFs) in the EKF state vector at all times. If the vehicle then

slows to a hover, the vehicle position estimate will not drift

relative to these features as they continue to be observed.

Like OFs, PFs are feature points observed by the camera,

which are picked randomly from observed features. The

estimate of the feature position in the world is parameterized

as simply 3D cartesian point. New PFs are added to the

EKF state fully initialized rather than going through an

initialization phase like [15] or by using a prior on depth

like [16]. Our system takes advantage of the vehicle poses

and their associated images already estimated in the state.

When the number of PFs currently visible drops below a

threshold (we have found five to be sufficient), a new PF is

selected from the potential OF measurements which have not

yet been used. The system chooses a new feature along the

direction of motion of the vehicle and with sufficient baseline

to allow a good initialization. The initial estimated position

for the new PF is obtained by triangulating its location from

two camera views already present in the filter state for the

pose-based estimation. The PF is placed in the state with

correlations due to the poses used to calculate its initial

position. If the feature is also visible in the other frames

in the state then these observations are used to update the

EKF state. In all later timesteps, observations of the PFs are

used to constrain the current vehicle pose in the standard

way for feature-based filters. When any of the PFs passes

out of view of the camera it is removed from the state to

make room for new PFs. A persistent map is not necessary

for our application.

D. Ingress Features

It is important for the system to be able to accurately

navigate relative to a door or window when the MAV is

flying into a building. For this reason, the position of the

ingress target must be estimated in the same filter.

To identify a building entrance, the system detects rect-

angular wall openings, such as windows or doors, as a

gap inside a wall surface bounded by straight lines. In our

Fig. 2. Door detection for ingress: an area of out-of-plane features (red
dots) bounded by vertical line segments (green). In-plane features are labeled
blue, other detected vertical lines are labeled black.

experiment we concentrate on detecting door openings as

ingress targets, which allows us to simplify the tracking

problem. As it is often difficult to accurately track the upper

and lower horizontal boundary of the door opening during

approach, because they often are not in view when the

vehicle is centered in front of the opening, we concentrate

on tracking the vertical edge positions as the most crucial

component for a door ingress maneuver and neglect accurate

height tracking of the ingress target. To initially detect a

door opening, a homography based surface reconstruction

(cp. [21]) is used to separate in-plane features that are located

on the planar wall surface from off-plane features that are

assumed to be located behind it (Figure 2). A histogram

based clustering of image regions with in-plane and off-

plane features extracts candidate regions for wall openings. If

these regions are bounded by vertical straight lines, which are

detected using Canny edge detection and a Hough transform,

a door opening is detected and the position of the left and

right edge is added to the filter state as soon as possible.

When two stored poses in the state observe the door with

sufficient baseline, the two vertical edges on either side

of the ingress target are triangulated. Each vertical line is

parameterized as an infinite line passing through a point

on the global horizontal plane. The 2D coordinates of this

point are put into the EKF state. This triangulation process

is illustrated in Figure 3.

Once the ingress target has been added to the state, further

observations of the two edges can be used to improve the

estimate. In all new frames where the ingress target is visible,

the vertical edges are tracked and used for the EKF update.

The measurement used by the EKF is the perpendicular

distance of the two observed endpoints of each line from

the predicted projection of the infinite line into the image.

Data association for the two vertical edges being estimated

is done using intensity histograms for each side of the line.

If the estimated position of the ingress point is not

maintained by the filter along with the vehicle pose then the

estimate of their relative position can drift over time. This

would make flying through the confined space of an ingress
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Fig. 3. During ingress, the vertical edges on either side of the opening
are triangulated and subsequently estimated by the EKF. The edges are
parameterized as a point xV LF on the global horizontal plane (X-Y). This
point is determined from the crossing point of the projection onto this plane
of the rays (v1 and v2) defined by the observation of the lines in each camera
(c1 and c2).

Fig. 4. If the position of the ingress point is not estimated in the filter
along with the vehicle pose then the estimate of their relative pose can drift.
This figure shows the predicted position of the doorway edges (dashed lines)
after 30 seconds of drift. By estimating the position of the ingress point in
the filter, our system correctly predicts the doorway at the observed position
(solid lines).

point dangerous. This drift is illustrated in Figure 4 where

the estimated position of the door is not maintained after

its initial triangulation. After 30 seconds, the position of the

doorway relative to the vehicle has significantly diverged. If

the ingress point position estimate is maintained in the filter

then the estimated relative position is correct.

E. Vertical Line Measurements

Apart from the lines on either side of the ingress point,

many more vertical lines are often visible in man made

environments. Though the exact location of these lines is

not needed for navigation, measuring vertical lines in the

image can improve the filter’s estimate of the vehicle’s roll

and pitch.

At each frame, the vertical lines are detected using Canny

edge detection and the Hough transform. Those not cor-

responding to the current ingress target are used for these

measurements. The depths of these lines are never calculated

and their correspondence between frames is not used. Non-

vertical lines are excluded using a Mahalanobis compatibility

test.

A set of parallel lines in the world point towards the

same vanishing point when projected into an image. The

perpendicular distance of the observed vertical lines and the

vanishing point predicted by the current estimated vehicle

orientation is used as the measurement for the EKF update.

If the vehicle orientation estimate is correct then the observed

vertical lines will point directly towards the predicted van-

ishing point and the measured perpendicular distance would

be zero.

The calculation of a vanishing point is best performed in

homogeneous coordinates. Let RCG represent the a priori

estimates of the rotation matrix from the global to the camera

frame. The camera projection matrix is denoted as Π, which

is the three-by-four element matrix that maps from three

dimensional homogeneous coordinates to two dimensional

homogeneous coordinates. The homogeneous coordinates for

the point at infinity corresponding to vertical (z-axis aligned)

lines is z =
[
0 0 1 0

]T
. Using this the coordinates for

the vanishing point v can be computed as follows:

v = ΠRCG

[
I3×3 0

]
z (6)

Note that the position of the vanishing point does not de-

pend on the translation of the camera since we are projecting

a point at infinity.

The distance, d, between the predicted vanishing point

location, v̂, and each observed vertical line, l is the dot prod-

uct between the two expressed in normalized homogeneous

coordinates.

d = lnormalized · v̂normalized (7)

The difference between this measured distance and the

predicted value of 0 is used as the innovation in the EKF

update step to improve the estimate of the vehicle’s roll and

pitch relative to gravity. Without these measurements, the

vehicle’s attitude is still observable due to the gravity com-

ponent of the acceleration measured by the IMU. However,

this estimate alone can be quite noisy and is greatly improved

when these visual observations are also taken into account.

This is illustrated in Figure 5 where the estimated horizon

line is drawn in the image with (green solid) and without (red

dashed) the observations of the vertical lines (black) being

used by the filter.

III. MONTE CARLO OPTIMIZATION OF FILTER

The ultimate goal in combining pose and feature-based

constraints into the filter is to benefit from the advantages

of both approaches. Pose-based filtering allows information

from many features to be incorporated efficiently, and can

utilize only short feature tracks, while feature-based filtering

provides drift free localization when at least three features

can be persistently tracked. In theory, one would expect the



Fig. 5. Vertical line observations improve the estimate of the vehicle’s
roll and pitch. Here, the estimated horizon line is drawn on the image with
(green solid line) and without (red dashed line) observations of vertical lines
(black solid) being used.

performance of the filter to increase with both the maximum

number of poses added to the system state Mmax, and the

number of features included in the state vector N . At the

same time, the maximum state vector length is then equal to

15+3N+6Mmax, which naively implies that computational

complexity is O((N +Mmax)
3).

Monte Carlo (MC) simulations were used to investigate the

effect of changing N and Mmax, in terms of computational

cost and the root mean square error (RMSE) of the filter es-

timate compared to the simulated ground truth. 1000 Monte

Carlo runs were used to simulated relevant mission profiles,

including periods of fast motion and hover conditions. Each

simulation created a set of noisy observations (OFs, PFs,

and inertial measurements), which assumed optimal tracking

(known data association, and features were tracked as long as

they were in view). Based on this set of noisy measurements,

a set of filters was run, each with different N and Mmax.

A unique revelation about MSCKF-pose-based filtering

is that increasing the number of frames Mmax did not

produce uniformly better results (Figure 6), as is implied

in [10]. Instead filter error eventually increased with respect

to Mmax. After investigation, we believe that Mmax needs to

be made consistent with the IMU integration performance. In

fact increasing Mmax in practice tends to make the updates

more precise (as they linearize around a larger baseline),

but less frequent, as the filter aggregates measurements up

to Mmax (see Section II-B and [10]). The low-performance

IMU utilized here can only be integrated for less than a sec-

ond before pose estimates errors become significant. Unless

numerous vision based filter updates are made every second,

overall filter performance degrades. This effect is probably

not seen in [10] due to the use of a high performance IMU

system.

The implication of this results is that small Mmax is

optimal from both a computational and a performance per-

spective for MAV systems with low performance IMUs. In

this case a fixed Mmax allows the addition of N PF tracks

to be performed by the filter, where N can be increased up
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Fig. 6. Monte Carlo simulation of RMSE of vehicle state compared
with simulated ground truth for different Mmax, the maximum number
of camera frames allowed in the filter state vector. RMSE did not decrease
uniformly with Mmax, instead an optimal Mmax = 7 was found.
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Fig. 7. Camera position error relative to VO in real-world sequence.

to the computation limits of the system.

IV. EXPERIMENTAL RESULTS

The performance of the system has been evaluated using

a real-world sequence demonstrating all three scenarios of

interest: traverse, hovering, and ingress. Results of this exper-

iment are shown in Figure 8. To better assess the performance

of the system a Bumblebee stereo rig with attached IMU was

used. This allows us to calculate approximate ground truth

motion for the sequence using stereo visual odometry (VO).

The VO method of Howard [22] was used which has been

shown to be accurate to 0.25% of distance covered. Then,

to test our algorithm, the images from just one side of the

stereo pair were used since the MAV itself supports only

a single camera. The IMU used in the experiments was a

MicroStrain 3DM-GX1.

At the beginning of the sequence, a traverse was demon-

strated as it translated along the wall to the right of the

doorway. As is shown in Figure 8(a), the large number of

OFs observed during a fast traverse are key to constraining

the vehicle motion estimate. During these periods, visual

features are only in view for a short period of time and so

PFs are less important here. Vertical lines observed during

this time help prevent drift in the attitude estimate of the

vehicle.

When the door comes into view it is identified as an

ingress point (Figure 2) and is added to the filter state. Soon

after, the system slows to a stop in front of the doorway and

drift free tracking is demonstrated relying on observations of

PFs in the map (Figure 8(b)). During a near stationary hover

like this, OFs are of little help since there is no baseline in

successive frames to allow triangulation.

Figure 8(c) shows the estimate as the system performs the

ingress maneuver and passes through the doorway. Since the



Observations
Map
View

Opportunistic Features

Persistent Features

Ingress Features

Vertical Line Observations

Vehicle

Vehicle Pose Estimate
Current Retained

Trajectory

Estimate Truth

Image
View
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Fig. 8. The system was tested in a real-world scenario demonstrating (a) Fast Traverse, (b) Hovering, and (c) Ingress. The left column shows the camera
view at these key moments with corresponding observations. The right column shows the filter estimate. See the key above for symbols used. Uncertainty
ellipses of three standard deviations are given for the Persistent and Ingress Features.



position of the ingress point is estimated by the filter, the

vehicles position relative to the boundaries are known and

the vehicle can safely pass through the doorway.

The ground truth trajectory from VO was aligned to our

estimate using a camera pose late in the sequence but before

the ingress. Figure 7 shows that the error in vehicle position

is bounded while the persistent door features are in the map

and in view of the camera. However, during the traverse at

the start of the sequence the estimate drifts since PFs are

removed from the map as they pass out of view.

The unoptimized system currently requires 140ms for

image processing (implemeted in C) and 75ms for state

estimation (Matlab) per frame, processed offline on a 3.2GHz

desktop machine.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The developed Feature and Pose Constrained Extended

Kalman Filter (FPC-EKF) allows navigation of micro air

vehicles (MAVs) using only an inertial measurement unit and

a single camera. The incorporation of both poses and features

into the filter state allows the efficient use of hundreds of

observed visual features to constrain vehicle motion, while

achieving navigation with respect to critical environment

features such as ingress points. This hybrid solution avoids

the limitations of both pose-based filters, where drift occurs

even with sustained viewing of landmarks, and feature-based

filters, which use sparse maps and therefore make fewer

observations per time-step. The use of Monte Carlo sim-

ulation showed the unique applicability to computationally

constrained MAVs. Due to low-performance IMU sensors,

limiting the maximum number of poses in the filter state was

both optimal in terms of filter performance and computation.

The designed filter was run offline on a MAV-relevant

data set, where the vehicle traversed along a building before

detecting and hovering in front of a doorway, and finally

entering into the building. Results show low drift rate track-

ing during traverse, and sustained localization with respect

to critical door edges during hover and ingress.

B. Future Work

Current and future work will focus on implementing the

FPC-EKF on-board the Asctec Pelican Quadrotor. Future

testing will be conducted to verify both feature detection and

tracking in varied terrain, as well as estimator performance.

Particular attention will be focused on the trade-off of

low cost feature detection and tracking, suitable for pose-

based filters, and the limited use of high-performance feature

descriptors for sustained tracking of critical features.
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